H.E.S.S.

High Energy Stereoscopic System

Gavin Rowell (University of Adelaide)

(for the H.E.S.S. collab.)

3rd School of Cosmic-Rays, Arequipa, Peru (Aug/Sept 2008)

The Cosmic Ray Energy Spectrum

Since discovery (1912, Victor Hess), CR origin still unknown!

CR Acceleration: How? Diffusive Shock Accel.

Krymsky 1977, Axford 1977, Blandford & Ostriker 1978, Bell 1978 [following Fermi (1949, 1954)]

dN/dE ~ E^{-2.0} at source $E_{max} \sim 10^{14} - 10^{15} \text{ eV}$

see review Hillas 2005

<u>CR Origin: Where?</u> Shell-Type Supernova Remnants Ginzburg & Syrovatskii (1964)

10⁵⁰ ergs

Gamma Rays from multi-TeV hadrons (Cosmic-Rays - CRs)

CR deflected by magnetic fields

$p+p \rightarrow \pi^{\circ} \rightarrow 2\gamma$

MOLECULAR CLOUD Gamma-Rays (+ Neutrinos)

Molecular Clouds act as targets for particle accelerators.

Key Signatures - Broad-band flat spectra GeV to multi-TeV emission

- TeV gamma + Mol Cloud spatial correlation --> TeV gamma and arc-min mm-wave observations

We also have! ' $p+p \rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + v_{\mu}(v_{\mu}) \rightarrow e^{\pm}$ secondary radio to X-ray synchrotron

Gamma Rays from multi-TeV electrons

γ – CMB, IR, UV photon fields

keV X-Rays

TeV Gamma-Rays

Accelerated TeV Electrons $e + \gamma$ (soft) -> $e' + \gamma$ (TeV) e + B (μ G) -> $e' + \gamma$ (keV)

Accelerated GeV Electrons $e + B (\mu G) \rightarrow e' + \gamma (\sim eV)$ (inverse Compton scattering) (X-ray synchrotron emission)

(Radio - optical synchrotron emission)

see also sync. from 'secondary' electrons

Objectives (a growing list) of TeV Gamma-ray Astronomy

Oldest question in modern astrophysics!

Origin of (Galactic) Cosmic Rays (CRs)
Shell-SNRs, Molecular clouds, Diffuse radiation of the Galactic Disk..

Particle acceleration/interaction & Photon production/transport..... Pulsar Wind Nebulae (PWN), Compact Binaries.....

Stellar Clusters & Stellar Wind Interactions

Shock accel in wind/wind/ISM interactions, Superbubbles

Galactic and Extragalactic Sources with relativistic flows

Pulsars, Pulsar Winds, Microquasars, Small and Large Scale jets of AGN, GRBs

Observational Gamma Ray Cosmology

Diffuse Extragalactic Background radiation (constraints),

Others

Large Scale Structure (Clusters of Galaxies), Dark Matter Halos, Pair Halos Ground-Based Gamma-Ray Detection with Stereoscopic Cherenkov Imaging

Extensive air shower from primary gammaray or cosmic-ray

Cherenkov light 'pool'

Intersection of image axes gives accurate shower direction

ang. res ~ few arcmins ~ 1/sqrt(n_{tel})

energy res ~ 10-15%

H.E.S.S. Array: 4 x Cherenkov Imaging Telescopes (22° S 1800m a.s.l. Namibia)

120 m

4 x 12m diam dishes

focal-plane cameras 5 deg FoV

> H.E.S.S. >25 Institutions (Europe,Africa,Australia) http://www.mpi-hd.mpg.de/hfm/HESS/HESS.htm http://www.mpi-hd.mpg.de/hfm/HESS/public/som/current.htm <u>Source of the Month"</u>

S S S

ang. resolution few arcmins

The H.E.S.S. Telescopes

- High Energy Stereoscopic System
- 4 telescopes (in Namibia 23° S) stereoscopic observation mode
- Each telescope: ~107m² mirror surface, 380 facets
- Photomultiplier camera (ns response) 960 PMTs, ~5° field of view (FoV)
- Sensitive energy range: 0.1 TeV up to ~50 TeV
- Angular resolution: ~0.1° per event arc-second src location

Galactic Plane Scan – up to early 2008

Extended H.E.S.S. GPS

- -85° < *l* < 60°
- $-3^{\circ} < b < 3^{\circ}$
- Scan mode: 400 h
- Detected 50+ Galactic sources of VHE gamma-rays
- ICRC 2007, DPG 2008, Gamma08

18

Exposure [h]

TeV Source Types

Class	2003	2005	2007	2008
PWN	1	6	18	19
SNR	2	3	7	7
Binaries +		2	4	4
Diffuse		2	2	2
AGN	7	11	19	23
Stellar Cluster *			1	1
UnID	2	6	20	21
TOTAL	12	30	71	77

 * Also includes massive high mass loss (egO,B, WR) stars
 + Binaries – Includes wind/wind accretion, matter accretion and jetpowered

CR accelerator + Molecular Cloud (passive target) *further discussion see also Drury etal 1984, Naito et al 1984, Aharonian etal 1986*

TeV Gamma Flux from pi-zero decay above energy E

$$F(\ge E) \sim 3 \times 10^{-13} \left(\frac{E}{\text{TeV}}\right)^{-1.6} \, k(E) \, \frac{M_5}{d_{\text{kpc}}^2} \, \text{ph} \, \text{cm}^{-2} \, \text{s}^{-1}$$

Aharonian (1991) Ap & SS. 180, 305

- d_{kpc} distance (kpc)
- k(E) E-dependent scaling factor: For 'Earth-like' CR spectrum k(E) = 1
- M₅ Mol. cloud mass (units: 10⁵ M_{sun}) from line tracers CO, CS etc.....
- If F & M₅ known --> can determine CR spectrum at source

Diffuse Emission from the GC Region

 $\frac{GC \& Sgr-B}{Spectral index}$ $\Gamma = 2.29 \pm 0.07 \pm 0.20$

Implies harder CR spectrum than in solar neighborhood

CR Enhancement factor k~ 3-9 (E>1 TeV)

--> Proximity of accelerator and Target (to avoid CR transport losses)

(CANGAROO) Muraishi etal 1999, Enomoto et al 2002)

<u>ASCA: X-Ray</u> 1 – 3 keV Uchiyama 2002

Gamma-ray & X-ray morphology are very similar.

TeV gamma-ray emission from electrons and/or hadrons??

H.E.S.S. RXJ1713 Spectrum extends to >40 TeV

Aharonian etal 2007

RX J1713.7-3946 – Compare with Models

<u> RCW 86 – Shell Type SNR</u>

Distance and age uncertainty:

d ~ 1 kpc; age ~1600 year; Type Ia (Bocchino, Vink) --> SN185 d~ 3 kpc; age~ 10000 yrs; Type II assoc with and OB cluster

Spectrum – power law with spectral index Γ = 2.5

SN 1006: Historic SN

Type Ia (White Dwarf)

Distance 2.2 kpc

Diameter 0.5 degrees

Was earlier detected by CANGAROO (Tanimori etal 1998) but HESS only revealed Upper Limits (Aharonian etal 2005) x10 lower.

Deep observations by HESS since 2003 – 103 hrs

Motivated by 'clean' ISM environment making it 'simpler' to model (eg. Berezhko etal). SN1006 is ~15deg from the Galactic plane.

SN 1006: Discovery by HESS

HESS TeV Image +5.9sigma

Chandra X-ray contours (white) over TeV image

proton energetics ~ 10⁵¹ erg

W28: SNR & Molecular Cloud Interaction

NE region

SNR shock + mol. cloud interaction

- 1720 MHz OH Masers Claussen etal 1999
- ¹²CO(J=3-2) (J=1-0) eg. Arikawa etal 1999

see also Reach etal 2005

Radio/IR image W28 mixed-morphology SNR d ~ 2-3 kpc 35 – 150 kyr age

> Brogan et al. 2006 20/90 cm VLA MSX 8 micron

H II regions

W28-A2

H.E.S.S. 4,5,6 sigma contours

TeV emission towards NE rim of W28 and 0.5 deg S

Aharonian etal 2008

d ~ 0 to 2.5 kpc

d~2.5 to 4 kpc

V. good TeV & CO spatial association --> indication for hadronic origin However, several cloud velocity components present. Are clouds connected or just projection effects?

Compare TeV flux with cloud masses: CR density ~10-35 x local value

HESS J1825-137: An asymmetric pulsar wind nebula (PWN):

Aharonian etal 2006 A&A

> 2.5 TeV 1 – 2.5 TeV
< 1 TeV – behavior</p>
consistent with leptonic
origin due to synchrotron
& IC losses

HESS J1825-137 & NANTEN CO¹²(J=1-0) Why asymmetric? Answer: Dense mol. cloud at N edge.

PSR J1826-1334

LS 5039

PWN 'crushed' /distorted by SNR reverse shock after interaction with mol. cloud. see eg. Blondin etal 2001 Gaensler etal 2003 van derSwaluw etal 2004

Funk etal 2007 3.5-4 kpc <

HESSJ1023-575 : A new type of (A&A 2007) CR accelerator? Young open cluster

Westerlund2 – Young open cluster with two Wolf-Rayet stars (v.high stellar wind vel. & mass loss rate) WR20a is a binary CR acceleration in colliding wind shocks? Similar to TeVJ2032+4130?

Unidentified TeV Sources: No obvious counterparts A major subset of Galactic TeV sources

The brightest H.E.S.S. examples...

HESS J1303-631

HESS J1614-518

Aharonian etal 2005

Aharonian etal 2005,2006, Rowell etal 2008

HESSJ1614-518: Spectra from Several Regions

Position (J2000.0)				Spectral analysis		
Region	R.A. [hr]	Dec [deg]	σ_{region} [deg]	^{2}S [σ] (evts)	³ k	$^{3}\Gamma$
HESS J1614–158 HESS J1614–518N HESS J1614–518S HESS J1614–518P	16.235 16.250 16.232 16.235	-51.90 -51.70 -52.07 -51.90	0.40 0.15 0.15 ¹ 0.40	+19.1 (670) +11.1 (150) +8.7 (106) +12.5 (348)	$\begin{array}{c} 7.83 \pm 0.40 \pm 0.80 \\ 1.71 \pm 0.16 \pm 0.04 \\ 1.43 \pm 0.16 \pm 0.20 \\ 4.00 \pm 0.31 \pm 0.50 \end{array}$	$\begin{array}{l} 2.26 \pm 0.05 \pm 0.06 \\ 2.08 \pm 0.11 \pm 0.04 \\ 2.07 \pm 0.12 \pm 0.08 \\ 2.18 \pm 0.08 \pm 0.09 \end{array}$

1. Plateau region excluding HESS J1614-518N and HESS J1614-518S each within a circular region of radii 0.17°

2. Statistical significance (using Li & Ma 1983) and excess events in brackets. The background is estimated from reflected and near-tracking regions.

3. Power law fit to photon spectrum: dN/dE = k(E/1 TeV)^{-Γ} ph cm⁻² s⁻¹ TeV⁻¹ with k in units ×10⁻¹² ph cm⁻² s⁻¹ TeV⁻¹ at 1 TeV (with statistical and systematic errors) Systematics errors in k and Γ are estimated from the range of values obtained from hard and std cuts.

HESS J1614-518 : Counterpart Search

- Open cluster Pismis 22 (C1609-517) Stellar wind energetics sufficient

Open Cluster: Pismis 22 (C1609-517)

Relatively young open cluster towards the centre of HESSJ1614.

age ~ 40 Myr

but sufficiently old to generate supernovae..

d ~ 1 kpc

Piatti etal 2000 A&A360, 529

Not well-studied and due to strong reddening E(B-V)~2.0, cluster size may be underestimated.

<u>2MASS image:</u> Strong extinction to the north. See XMM results for this region.

No spectral measurements of individual stars at present but O and B type stars (or even WR) are likely present.

Fig. 6. Three colour 2MASS image of the HESS J1614–518 field $(1.2^{\circ} \times 1.2^{\circ})$ – blue (J band 1.25μ m) – green (H band 1.65μ m) – red (K band 2.17μ m). VHE significance contours (solid yellow lines - 3,5,7,8,9 σ) of HESS J1614–518 are overlaid.

Gamma-rays from binary systems

LS 5039

(see also LSI+61 303 by Albert etal 2006, Maier etal 2008)

Science 2005, A&A 2006_

Massive O6.5V star ~20 Msun

Compact Object 1.5 to 5 Msun

(neutron star or black hole)

Orbital Period 3.90603 days Casares etal 2003

Orbital Inclination 15 to 65deg (limits from lack of X-ray eclipse)

Discovery of 3.9 day orbital period: Lomb-Scargle Test

Phase-Resolved Energy Spectra

- --> Gamma absorption in UV field plays a role (pair prod X-section vs. angle)
- --> other physics issues also: anisotripic inverse Compton
- --> Max electron energies (B field changes)

Active galactic nuclei (AGN) and blazars

AGN: Luminous central region of a galaxy (found in ~1% of all galaxies)

AGN model:

- Central supermassive black hole
- Matter accretion (thermal emission from radio to X-rays)
- Relativistic plasma jet
- Observed AGN features depend on viewing angle (unification)
- Blazar: viewing angle ~ jet axis
- Relativistic beaming
 Doppler-boosting E_{obs} ~ δ E_{src}
- Pointlike TeV emission (*pair halos)
- Extreme variability

TeV AGN Sources: Mid-2007

Name	Туре	Redshift	Signif.	Discovered
			***:>10	
M 87	FR I	0.004	***	HEGRA
Mrk 421	BL Lac	0.031	***	Whipple
Mrk 501	BL Lac	0.034	***	Whipple
1ES 2344+514	BL Lac	0.044	***	Whipple
Mrk 180	BL Lac	0.046	5.5	MAGIC
1ES 1959+650	BL Lac	0.047	***	TA
BL Lac	BL Lac	0.069	5.1	MAGIC
PKS 0548-322	BL Lac	0.069	5.8	HESS
PKS 2005-489	BL Lac	0.071	***	HESS
PKS 2155-304	BL Lac	0.116	***	Durham
H 1426+428	BL Lac	0.129	7.5/5	Whipple
1ES 0229+200	BL Lac	0 .1 4	6.6	HESS
H 2356-309	BL Lac	0.165	***	HESS
1ES 1218+304	BL Lac	0.182	9/6.4	MAGIC
1ES 1101-232	BL Lac	0.186	***	HESS
1ES 0347-121	BL Lac	0.188	***	HESS
1ES 1011+496	BL Lac	0.212	***	MAGIC
PG 1553+113	BL Lac	?	***	HESS/MAGIC
3C 279	FSRQ	0.536	\sim 8 (trials?)	MAGIC

Mid-2008

 S5 0716+714
 z=0.31
 +7sig
 BL-Lac (LBL)
 MAGIC
 ATEL #1500

 W Comae
 z= 0.102
 +6sig
 BL-Lac (IBL)
 VERITAS
 ATEL #1422

 1ES 0806+524
 z=0.138
 +7sig
 BL-Lac (HBL)
 VERITAS
 ATEL #1415

 RGB J0152+017 z=0.080
 +7sig
 BL-Lac (HBL)
 HESS
 A&A 2008

PKS2155-304 (z=0.116) : Huge Flare

Peak flux ~15Crab; $L\gamma \sim 10^{12}$ Crab Minimum variability timescale $\Delta t \sim 173$ s Causality: constrain source size $R_{src} < c \Delta t \delta / (1+z)$ For Black Hole $\delta \sim 60$ to 100!

Extragalactic Background Light: the SED

Gamma horizon τ (E,z) = 1

from Blanch, Martinez etal 2005

TeV Spectra & Extragalactic Background Light

We can de-absorb the observed TeV spectra to estimate the intrinsic spectra

But intrinsic specrum should not be too hard!

Γ < 1.5

Due to Inverse-Compton limit Thompson regime

Spectra & Extragalactic Background Light

See Aharonian et al. (2005) Nature 440, 1018

Updated EBL Limits from new TeV Spectra Raue etal, Mazin etal, Puehlhofer etal 2007

The Giant Radiogalaxy M87

Distance:~16 Mpc (z=0.00436) Central BH: M_{BH} ~ 3.10⁹ M_{O} Jet angle: ~30° \Rightarrow not a blazar! Predictions of TeV emission and 10²⁰ eV particles (UHECR) First TeV detection (>4 σ) by HEGRA in 1998/99 (Aharonian etal 2003)

M87: A variable Source

Date [mm/yyyy]

X-ray (Chandra)

<u>HESS 2-day variability</u> constrain source size to < 5 δ R_s (Aharonian etal 2005) <u>TeV location:</u>

HST-1 X-ray knot or Central Black Hole?

HESS/MAGIC/VERITAS Campaign 2008 (Beilicke etal 2008)

M87: energy spectra

M87 energy spectrum

- Separate energy spectra 2004 (~5σ)
 2005 (~10 σ)
- Spectra well described by pure power-laws:

Comparison of 2004 vs. 2005: Photon indices Γ compatible, but different flux levels

H.E.S.S. II

H.E.S.S. II 30 metre diameter Cherenkov telescope under construction --> push energy threshold to < 50 GeV

reaching to GLAST's upper energy limit (few x 10's GeV)

HESS II Foundation completed

Dish construction underway (status early 2008)

Summary

A growing TeV Gamma Ray catalogue due to HESS

- <u>Shell SNRs</u>: Shell in TeV gammas: Hadronic &/or leptonic accelerators. ~10⁴⁹ erg necessary in protons.

Some cases for TeV/Molecular-Cloud overlap --> strong hint for hadronic origin

- In many TeV Galactic Sources emission up to >30 TeV
 --> particle acceleration above 100 TeV.
- <u>Pulsar Wind Nebulae</u>: Spectral evolution; Asymmetric morphology. Electronic origin.
- Open Clusters & Massive Stars: New CR accelerators?
- Compact Binaries: orbital modulation
- Unidentified TeV Sources a growing mystery
- <u>Extragalatic sources</u>: Sites of multi TeV particle production: probe background radiation, fast variability to minute timescales
- HESS II is coming < 100 GeV studies: AGN, XRB, GRBs....

- Additional Topics (not dicussed): Pulsar power population studies; Galaxy clusters; Dark matter searches